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Concentration Dependence of Diffusion-Controlled 
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A multiple scattering theory of competition effects in diffusion-controlled reac- 
tions are presented. We consider a random array of stationary sinks which react 
with a density field of another reactant. Using the radiation boundary condition 
to describe the reaction at the surfaces of the sinks, we treat the modification of 
the density field due to reaction with sinks exactly. By keeping only the most 
divergent terms in a given order of scattering and summing them, we obtain the 
rate constant as a function of the sink concentration in the steady state. We also 
calculate the concentration-dependent diffusion constant of the density field. 
Both the rate and diffusion constants have nonanalytic behavior in the sink 
concentration. 
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1. I N T R O D U C T I O N  

The theory of diffusion-control led reactions presented by  Smoluchowski  (1) 
is concerned  with the effect on the react ion rate of the slow diffusive 

mot ion  of the reactants  toward each other. W h e n  one reactant  is s tat ionary 
(a sink) and  the other described by a density field, the steady state density 
field at r is 

n( r )  = n0(1 - a / r ) ,  r > a (1.1) 

for the reactive b o u n d a r y  condi t ion  of complete absorption,  n ( a ) =  0. In  

Eq. (1.1), a is the sink radius and  n o is the density field in the absence of the 
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sink. For the one-sink problem, the total flux J into the sink is 

J = 4~rDoan o (1.2) 

which defines the rate constant k D = 4~rDoa, where D O is the diffusion 
constant of the density field. 

As the sink concentration is increased, this description must be modi- 
fied. (2) There is a competition among the sinks for the reactive field and a 
consequent alteration of the rate constant. The long-range diffusive nature 
of the density field gives rise to divergent integrals reminiscent of those in 
the Stokes problem. (3) As in.the cases of hydrodynamic screening in the 
Stokes problem (3) and Coulombic screening in Debye-Htickel theory, 
when all the many-body effects giving rise to the long-range interactions 
are incorporated, the divergence difficulties are expected to vanish. This 
competition among the sinks leads to a nonanalytic dependence of the rate 
constant on the sink concentration. This has been shown to be the case to 
leading order in the sink concentration for a random array of sinks by 
Felderhof and Deutch (4) and Lebenhaft and Kapral. (5) 

In this work, we obtain an exact expression for the dependence of the 
rate constant on the sink concentration for a random array of the sinks in 
the steady state limit, by using a multiple scattering approach. (3'6'7) Our 
derivation is motivated by the following physical argument: Consider a 
labeled sink, say a, which reacts with the density field. In addition to the 
bare density field, a can react with the density field modified by earlier 
reaction with all the sinks including a. All these contributions to the rate 
constant are analyzed. By systematically ordering the various reaction 
(scattering) events and keeping the most divergent term in any order of 
scattering, we obtain an explicit expression for the rate constant for a 
random sink array. Using the same multiple scattering formulation we also 
derive the dependence of the diffusion constant of the density field on the 
sink concentration. 

Our derivation consists of two parts. The first deals with writing a 
macroscopic equation of motion for the average density field and the 
definition of the rate and diffusion constants and is contained in Section 2. 
The second part involves the derivation of the microscopic density field at 
any space point and averaging it to match with the macroscopic equation 
of motion. This is presented in Section 3. The details of the calculation of 
the rate and diffusion constants are given in Sections 4 and 5, respectively. 
Section 6 contains a discussion of the results. 

2. M A C R O S C O P I C  LAW 

We consider the system to be composed of a fluid carrying reactive 
particles described by a density field n(r) and a set of N stationary reactive 
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sinks at concentration c = N~ V, where V is the total volume of the system. 
At steady state, the volume rate of production of reactive density due to 
external sources is just compensated by its removal via the sinks. An 
auxiliary field ~,(r) is defined such that, in the absence of sinks, the density 
field satisfies 

DoV2n (r) -- q,(r) (2.1) 

The solution of Eq. (2.1), 

= - f G(r  - no(r) (2.2a) 

is given in terms of the diffusive propagator 

G(r) -- (4~rD0r)-1 (2.2b) 

The field @(r) can account for external boundary effects, other sources, or 
fluctuating contributions to the density field. We include it here for 
generality but will make no use of it in this work. In the presence of the 
sinks, the diffusive field satisfies 

N 

DoV2n(r) = ep(r) 4- ~ f d~2~ 8(r - R~)o~(~,) (2.3) 
(x= l  

The ath sink absorbs the reactive density field strength o,(f~)  at any space 
point on the surface of a, R~ = R ~ + r~(f~), where R ~ is the position vector 
of the center of mass of a and r,  (f~) is the position vector of this surface 
point from R~ f~ denotes the orientation of r~. For notational conve- 
nience, r~ and f~ are used interchangeably in this work. The second term 
on the right-hand side of Eq. (2.3) gives the net depletion of the reactive 
density field due to all the sinks. 

As we are interested in the macroscopic density field, we average Eq. 
(2.3) over a distribution of sink centers to obtain 

#,(r) + f dr' Y.(r - r') (n (r')) (2.4) 

Here, the angular bracket denotes the average over the appropriate distri- 
bution function. In the last equality of Eq. (2.4) we have defined a 
(concentration-dependent) macroscopic kernel Y-(r) so that Eq. (2.4) has the 
form of a linear law. Introducing the Fourier space transform of a field f(r) 
a s  

f(k) -- f eik'7(r) ar (2.5) 
Eq. (2.4) is 

-Ooke(n(k)) = 4,(k) + Z(k) (n (k ) )  (2.6) 
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Expanding E in powers of k shows that the concentration dependent rate 
constant, kf(c), is 

kf(c) = Y{k = 0) ~ 5,(0) (2.7a) 

and the concentration-dependent diffusion constant, D(c) is 

1 d 2 E ( k )  k=O - = - -- E ~2) (2.7b) D(c) D o 2 dk 2 

Thus, a calculation of two spatial integrals of Y,(r), E (~ and E (z) deter- 
mines kf(c) and D(c). The formal solution of Eq. (2.4) is 

(n(r)) = no(r) - f dr' f dr" G ( r -  r')E(r' - r")(n(r")> (2.8) 

The form of s depends on the shape of the sinks and the specifica- 
tion of reaction at the sink surfaces. We assume that the sinks are spheres 
of common radius a and use the traditional "radiation boundary condi- 
tion" 

n (R~) kD V n (r) = - -  �9 =-- ~ ( R ~ ) n ( R ~ )  ( 2 . 9 )  
ko  r r ~ n .  + 

Here k 0 is a bimolecular rate characterizing the contact reactivity. For 
k 0--> ~ one has complete absorption, n(R~) = 0, and for k 0--> 0 no reaction 
(no flux across the sink boundary). The R~ + limiting procedure ensures that 
the flux at the sink boundary is evaluated from the outside. The operator 

(R,) is defined just for notational convenience. 
In the following section we determine E by comparing the average 

solution of the microscopic field equation given in Eq. (2.3), with Eq. (2.8) 
and using the boundary condition of Eq. (2.9). 

3. THE MICROSCOPIC EXPRESSION FOR Z 

The formal solution of Eq. (2.3) is 

= n 0 ( r  ) - f df]~ G(r - R~)%(~) n(r)  

N 
- Z f d ~ G ( r -  Re).e(~e) (3.1) 

/3=1 

Thus, the microscopic density field at any space point r is expressed in 
terms of the various (%) and the problem reduces to the determination of 
these {%). We obtain a formal expression for these {o~} using the 
boundary condition given by Eq. (2.9) and a multiple scattering expansion. 
The procedure is as follows: First, write the density field for a space point 
on the surface of a sink, say a, from Eq. (3.1). Second, invert this equation 
to obtain % as a function of n(R,O and {oB~). This can be accomplished 
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by defining the surface inverse K~-t(~ r, a'r) of G(r s, r:) via 

f da~ K2 -l . . . . . .  ( a r , a r ) G ( a r , a r )  = ~ ( a r  - a t )  (3.2) 

The surface inverse is obtained by expanding G in spherical harmonics. An 
explicit expression for K~ -I  is presented in Appendix A. Letting r = R: in 
Eq. (3.1) and using (3.2) yields 

o r (at)  = - f a a ;  K 2 '(as,  a : ) [  n (R'r) - no(R:) ] 

- ~a~-'f da :da~Ks  - RB)aB (aB) (3.3) 

: # a  

We now express o,(f~r) in terms of n o by using the boundary condition in 
Eq. (2.9). In this section, only the complete absorption case is considered, 
n(Rs) = 0; the general case is presented in Appendix B. Setting n(R~) = 0 
and iterating Eq. (3.3) yields 

= f d a r  Ka (a t ,  as)n0(Rr) or (as )  ' - '  ' ' 

- ~ faa ' s ,m~aa'BIC;-~(as ,a ; )c (R:  - R~)/CB-'(aB, a~),,0(R;~ ) 

(as, a s ) a ( ~ s  - R~) 
f l ~ s  y ~ f i "  

x K B- l(aa, aS)G(R 5 - R,)K 7- l(a~,, a~,)no(R~) 

- ~ ~, ~ fKs + . . .  (3.4) 
f l ~ a  e ~ f l  8 ~ e "  

Substituting Eq. (3.4) in Eq. (3.1) gives 
N 

n(r) = no(r ) - 2 ( d r ' d r "  G(r - r')T~(r' - r")no(r" ) 
o ( = l  J 

N 

+ X ~ (dr""dr~G(r-r')T~(r'-r') 
a= 1 f l # a  ~ 

X a(r" -- r'")r~(r'" -- r'~),o(r '~) 
- ~ X X ( a r r ~ r ~ a r ~ . o +  . . . (3.5) 

B~aa ~ ,#B J 

where 

L ( r  - r') = - f a a r a a : ~ ( r -  R r ) K ~ - ' ( a ~ ,  a : )~ (r '  - R:)  (3.6) 

This result shows that the density field at r can be written as a series of 
scatterings from the sinks. The G's propagate the density disturbance from 
one sink to the next while the T's are the scattering operators at the sphere 
surfaces. The sink structure is exactly described by Eq. (3.6). 
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The density field given by Eq. (3.5) is a microscopic expression. We 
average over the distribution of the sinks to obtain the average density field 

(n(r)) = n0(r ) - ~ f dr'dr" G(r-r')(T~(r'-r"))no(r" ) 

+ ~  2 (dr'dr"dr'"dri~G(r-r') 
B ~ a  v 

• (T~(r' - r")G(r" - r'") T•(r'" - r'V))no(r iv) . . . .  (3.7) 

In order to get an explicit expression for E in terms of ( T, ), we iterate Eq. 
(2.8) indefinitely: 

= no(r ) - f dr' dr" G(r - r')E(r' - 
( ~ ( r ) )  r ' r )no(r"  ) 

+ f dr' dr" dr"' dr i" G(r - r')E(r' r r' ) 

• G(r" - r'")E(r'" - r'~)no(r '~) 

- I GEGYGEno+ . . .  (3.8) 

The Eqs. (3.7) and (3.8) are equivalent. To make a ready comparison of 
these two equations, write E as 

E--= ~ Ej (3.9) 
j=l 

where Ej corresponds to a sequence of j scatterings (thus containing j "T" 
operators). 

From Eqs. (3.7)-(3.9), it follows that 

Y.~(r - r') = 2 r ( r  - r') 
~ 1  

- (  ~ T~(r- r " ) ) G ( r " -  r '")( ~ Tp (r"' - r ')) 1 

- ( ~ _ ~ T ~ ) G ( ~ T a ) G ( ~ T , ) )  etc. (3.10, 
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By evaluating the various Yj's given by Eqs. (3.9) and (3.10) and using Eq. 
(2.7) the concentration dependencies of the reaction rate constant and the 
diffusion constant can be calculated. The details are presented in the next 
sections. 

4. EVALUATION OF THE RATE CONSTANT 

As discussed in Section 2, the rate constant is given by the k = 0 part 
of the Fourier transform of Z(r) defined in Eqs. (3.9) and (3.10). In the 
explicit evaluation of these Ej's, the average is performed over a random 
distribution of the centers of mass of the N sinks. Since the problem under 
study is dominated by the long-range diffusive interaction of the sinks, the 
details of the short-range intersink potential are probably not very impor- 
tant. In view of this, we have employed the sink penetrability assumption in 
this work. However, the above results for the Zj's are exact for sinks with 
any prescribed interaction potential. 

With the above-mentioned averaging procedure, we proceed to evalu- 
ate the Y~j's. From Eqs. (3.6) and (3.10), Zl(r - r') becomes 

1 ~ f dR o da,~ da',~ N l ( r  - -  r ' )  = --~ 

• 8(r -- R ~ - ro)Ks ~(a~, a',)8(r' - R ~ - r'~) (4.1) 

Performing the Fourier transform as given by Eq. (2.5), Eq. (4.1) readily 
yields 

f 1 r s Xl(k ) = c d a ~ d a ' K ~ -  (a~,a~)exp[ - i k .  (r~ - G)] (4.2) 

By expanding K~ -~ in spherical harmonics, as in Appendix A, one has 

l l' 

p, 2 Kzm, l'm'Y,m(a) Y?'m'(a') (4.3a) 
l = O l ' = O m = - l r n ' = - l '  

where 

glm,~, m, = g l -  l~ll,~mm, (4.3b) 

by symmetry. Explicit evaluation of K z- 1 yields (see Appendix A) 

K1-1 = D o a ( 2 l  + 1) (4.4) 

Use of Eqs. (4.3) and (4.4) in Eq. (4.2) gives 

Z l ( k  = O) = ck  D (4.5) 

When the averaging in the ~2 term is performed, the integrand in Z2 
contains a factor of ( g 2 -  1), where g2 is the radial distribution function. 
Since we consider here a penetrable sink system, Y2 vanishes. 
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We now proceed to evaluate Z 3. Equation (3.10) shows that there are 
two possible  scat ter ing sequences,  viz., (T~GTI~@,GT, r~r and 
(T,~GTt3vs,~GT,~). The first term, 7 v s a, involves a factor of (g3 - 1) in the 
integrand, where 83 is the three-particle distribution function. For penetrat- 
ing spheres, (T,~GTr thus vanishes. The second term in E 3 is 

X3, v =.(r - r') = f da,~ da',~ da~ da',," da~ dfg B 

• , ( ~ X 6 ( r -  R ~ -r~)K~-l(a~,a '~)  

• G(R ~ + r" - R~ - r )K;  (aB, 

i t \  r~  - -  l z t ~ t t  r  • G(Rg + r~ - R ~ - r~) .o  ( a e ~ , ~ )  

x;~(r ' -  R ~ - r'")) + o(1/V) (4.6) 

The Fourier transform of Eq. (4.6) is 

X (k) = c2f da da;da: da "da  f d3k' 

X exp [ - ik.  (r e - r " )  + ik'- (r'~ - r B + 6 - r2) 1 

- - 1  t - - 1  t - - 1  n / i t  X K~ (fl~, ~2~)K~ (ap, ap)K~ (~2,, ~2~ ) (4.7) 

where G(k) = 1~Do k2 is the Fourier transform of the diffusive propagator 
G(r). By expanding the K - l ' s  in spherical harmonics as in Eq. (4.3), and 
performing the angular integrations, Eq. (4.7) reduces to, for the k = 0 part, 

Z3(k = 0) = 4~rcZk2nfo~176 dk'k'2 j~(k'a)GZ(k')r(k ') (4.8) 
(2~-) 3 

Here, 

r(k) = f dar K;'(a~, a})exp [ -  ik-(r  B - r})] 

= kD2(2l + 1)2ff(ka) (4.9) 
l 

with jr the spherical Bessel function of the first kind of order I. The integral 
in Eq. (4.8) diverges since the integrand ~ 1 / k  2' a s  k'--)0. As shown in the 
following paragraphs, all Zj's, j >/4, also contain divergent terms. Since all 
the integrals of these terms diverge individually, we sum the integrand first 
and then perform the integration. 
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For the system of penetrating spheres, the only scattering sequences in 
~4 that do not vanish upon averaging are (T,~GTB~GTve=~GT,~) and 
(T,~ GTt3e: ~ GT~,GTt3~ ). Both these sequences lead to divergent integrals. In 
Appendix C, it is shown that the latter term is less divergent than the 
former. We keep only those scattering sequences which are the most 
divergent in any given order of scatterings. (These are the ring terms). 
Therefore, for 224, the leading divergent term is, after Fourier transforma- 
tion, 

f , , f d3k' Y.4(k) = - c  a df~d~2" d~2d~' '' df~Bdf~l~df~vdf~ v ~ G3(k') 

• exp [ - ik.  (r e - r2") + ik'. (r'~ - r 2 - r B + r~ - r v + r'v) ] 

• K~-'(a~, a'.)K i l(ar a})K~-'(a,, a',)K~-'(92, a ;" )  (4.10) 

Upon performing the angular integrations, Eq. (4.10) simplifies to 

224(k=0) = _4~c3k~f0~ (-~)3dk ~2/0~(ka)a~(k)T2(k) (4.11) 

This also diverges as noted above. Note that this divergence goes like 
- 1 / k  4 as k--->0. Similarly, it can be shown that the ring term of Y7 
diverges like ( -  k2) 2 -J as k --) 0, fo r j  > 3. Collecting all these ring terms, we 
obtain 

2 YT( k = O)= 47rc2k~fo~ dkk2 T(k)y~(ka)G2(k) 
j = 3  (29"1") 3 

• [1 - cT(k)G(k) + c2T=(k)G2(k)  . . . .  ] 

c2k2D (.~ T(k)j2(ka) 
dk (4.12) 

2,r2Dg 30 [k 2 + cr(k)/Do] 

The integral now is convergent. Therefore, within the approximation of 
keeping only the most divergent terms, the rings, in a given order of 
scatterings, the rate constant is exactly 

Ck3D fo~176 j2(ka)~l (21+ l)2j2(ka) 
ky(c) = k o + 2~2D------ ~ k 2 + 4~rca N (2l + 1)2j~ (ka) (4,13) 

1 

A plot of Eq. (4.13) is given in Fig. 1. If we use the approximation of taking 
the scattering operator T(k) as being determined only by the k--~ 0 limit 
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Fig. 1. 
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Eq. (4.13). Dotted line: Monopole approximation of Eq. (4.14). 

(the monopole approximation), then T ( k  = O) = k D. Then kf reduces to 

 4.14> 

where @ = 4~ra3c/3 is the volume fraction of the sinks. For sufficiently low 
volume fractions, we recover the result of Felderhof and Deutch, (5) 

k<= kD[1 + (3q)) '/2 + ' ' .  ] (4.15) 

5. EVALUATION OF THE DIFFUSION CONSTANT 

As defined in Section 2, D ( c )  - D O is given by E (z) . We present some 
details of the calculation of E (2) from Eq. (3.10) in this section. 

The k 2 coefficient of E l is, from Eqs. (4.2), 
A ^  

= - c f f :  f d a o  da'~ (r~ro - r o r ' ) K 2 '  ' (a~,ao) (5.1) 

where/~ = k / k .  Using Eqs. (4.3) and (4.4) to perform the angular integrals 
in Eq. (5.1) leads to 

~2) = 4~ c a 2 ( K o  I _ K1-1) = 2D0~ (5.2) 
3 
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The next nonvanishing term for 2 (2) is E(32) and is given, from Eqs. (4.7) 
and (4.9), as 

2(3 2) 2 kk df~',~ d~2,~ da2" (r~ r . . . . . . . .  = - c  - ~ -  : d ~  ~ - e ) ( r e - r e  ) 

x Ga(k')T(k')exp [ ik ' .  (r'~ - r ' ) ]K~-l(a~,  ~'~)K~-'(f~', a " ' )  (5.3) 

The terms with GG and r"'r~" are divergent and we label their sum as 
Y332) (a). The terms with Gr" '  are nondivergent and we label their sum as 
~](2)(b). They can be expressed as 

Z(32)(a) = - 58 a4r~2 2 / . ) 0  c J o r ~ d k k 2 r ( k ) a 2 ( k ) j ~ ( k a )  (5.4a) 

and 

Y332)(b) = 24a4D2c2 fo~ dkk2T(k)G2(k)j21(ka ) (5.4b) 

All ZJ2),j ) 4, have divergent terms. In the spirit of the last section, we 
keep only the most divergent term in a given order of scattering for the a 
and b series. Collecting these ring terms, we obtain 

^" ~2 . . . . . .  dBk' 
Y~(2)(a) = -c2fck: f d f ~ d  ~ d f ~ d f ~  ror~f  ( 2 ~ )  3 

j=3 

X exp [ ik' �9 (r'~ - r~) ] K -  l(f~,,~2,~)Ka, -I(f~__,,,~2~ . . . . .  ) 

X G2(k')T(k'){1 - cT(k ' )G(k ')  + [ cV(k')G(k')]2 . . . .  } 

2 ~ T(x) j2(x)  (5.5a) 
_ 6 t~ D o (  dx 

qr J0 X 2 + 3q~T(x) 

In the last equality we have introduced dimensionless terms x = ka and 
T(k) = k o T(x). For the b series we have 

j = 4  
AA f f d3k ' = - c21ik : da~ da 2 da'd d a " ' r ~ G "  (2~r)3 

i r - 1 / - X exp[ ik ' -  (G - G)]Ks (aoao)na ' (aa,a 5'') 

x a3 (k ' ) r 2 (k ' ) {  1 - c r ( k ' ) a ( k ' )  + [ c r ( k ' ) O ( k ' ) ]  a . . . .  } 

3 ~ T(x)j~(x) (5.5b) 
=-162q~D~ aXxa[x2+3eOf(x )  ] 
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Fig. 2. 
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Combining Eqs. (5.2)-(5.5) yields 

D(, )  _ 1 + 2 ,  + 6 , 2 (  ~ dx [9j~(x) - j~(x)l T(x)  (5.6) 
D 0 7r ao x 2 + 3 ,T (x )  

This exact result, within the approximation of keeping only the ring terms, 
is plotted as a function of volume fraction in Fig. 2. 

The use of the monopole approximation, T(k) = k D, in Eq. (5.6) yields 

D(*)-I+20+ J 8 , 2 - * ( 1 - ( 1 / 2  3 3 ~ ) [ 1 - e x p ( - 2  3 ' ~ ) 2 }  
Do 

- 9 , [ , 3 / 2 ( 3 ~ ) K 3 / 2 ( 3 ~ ) - 1 / 3 +  2 , /15 ]  (5.7) 

where I3/2 and K3/2 are modified Bessel functions. This approximation is 
also plotted in Fig. 2. 

Expanding Eq. (5.7) in powers o f ,  yields 

D ( , ) / D  o = 1 + 20 - ~ , 3 / 2  4- ( 8 / 5 ) 0  2 - 3,/J@/a + 0(03) (5.8) 

6. D I S C U S S I O N  

We have presented a multiple scattering approach to the diffusion- 
controlled reaction between a uniform reactant density field and a random 
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array of stationary reactive sinks. This treatment leads to an exact formula- 
tion of the response function, E, for the system. Z contains all the 
information regarding the concentration dependencies of the rate constant 
for the reaction and the diffusion constant of the density field. The reaction 
at any surface point on any sink is described by a scattering operator, T, 
and we have derived an expression for E in terms of any general structure 
for T. In addition, the many-body effects arising from all the scatterings 
involving the various sinks are formally incorporated. 

When any single sequence of scatterings is considered, divergent 
integrals can occur. By keeping only the most divergent terms (ring terms) 
in any given order of scattering operators, we obtain a divergence-free 
theory for the rate constant and the diffusion constant as given by Eqs. 
(4.13) and (5.4). We recover the earlier result Eq. (4.15) of Felderhof and 
Deutch ~4) and Lebenhaft and Kapral ~5) to the leading order in sink 
concentration for the rate constant by neglecting the wave vector depen- 
dence of T. The Deutch-Felderhof procedure involves a hierarchy of 
correlation functions which is closed by a superposition approximation. 
Thus, beyond the leading term (cl/2), the two approaches are not directly 
comparable. Recently, Bixon and Zwanzig ~8) calculated D to o(q~) and we 
agree with their result as well as with the corrected calculation of Deutch et 
al. (9) This result is analytic since it describes the modification of the 
diffusion constant by independent spheres. The nonanalytic behavior oc- 
curs when multisink correlations are accounted for. 

It should be pointed out that at high sink concentration, the macro- 
scopic law, Eq. (3.1), is not correct. The nonlocal effects which are 
contained in Y~ should become important, and the macroscopic equation 
should be appropriately modified. 
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APPENDIX A 

The expansion of G(r~, r'~) in spherical harmonics is 

G(r~,r~)= ~ Gtm;Z,m, Ylm(~,~)Yff, m,(~'~) (A.1) 
lml'm" 

where Gtm; t'm" = GlrzrSmm' = [Doa(2l  + 1)]- I. Similarly expanding K~- l as 

K~-'(a~,a'~)= ~ K,~,;lt,m, rlm(a~)V?m,(a'.) (1.2) 
lml' m' 
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we obtain from Eq. (3.2) 

Ktm; 1 rm' = (Gtm; r,,,')-! = Kl-18tr6mm ' (A.3) 

where 

1(1-1 = Doa(2l + 1) (A.4) 

The one-sink rate constant is given by Eq. (4.2) to be 

kD = f d ~  d~"/~s ' ( ~ ,  ~'~) (A.5) 

Substituting Eqs. (A.2)-(A.4) into Eq. (A.5) and performing the angular 
integrations yields 

k D = 4~Doa (A.6) 

Now, we derive Eq. (4.9). Expanding K B- 1(~2B,~2~) in spherical har- 
monics, and doing the angular integrations leads to 

T(k) = f dl2B df]~ exp [ - / k  �9 (r~ - r~)] KB- I(fl~, ~2~) 

1 

= (4~r)2Ej~(ka)K, - '  ~ Y,m(ak)Yt,,(ak) 
l tn= - I  

= kD~, (2/+ 1)2j 2 (ka) (A.7) 
l 

where we have utilized Eq. (A.4). 

APPENDIX B 

In this appendix, we present a derivation of the microscopic density 
field of the reactant for the general reaction boundary condition, Eq. (2.9), 
instead of the simpler complete absorption condition treated in the text. 

Substituting Eq. (3.1) for n(r) on the right-hand side of Eq. (2.9), we 
obtain 

N 

n ( R ~ )  = -  Z~l Jd~2B~(R~)G(R~ - Rt~)o~(~) (B.1) 

since n0(r ) is assumed to be uniform everywhere. Use of Eq. (B.1) in Eq. 
(3.3) yields 

t Pt - -  l ! ! t t  

f , _ ,  , = df],~K~ ( f~,~,~)no(R~)-  d~2"df~BKd-l(~,~,12'~) 

• [1 - 6~(R[~)]G(R,~ - R~)oZ(~B) (B.2) 
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Iterating Eq. (B.2) we get 

o.(ao) f da" ds 2 g(a,,,a')Ks . . . . .  = (s  

- X (da'.da"da#da'pds 
fl~a" 

467 

• g(s s 1(s s 1 - ~,~(R" ) ] G(R,~' - R~ ) 

X g ( s  ' -~ ' s . . . . . . .  

+ Z Z ( "  gK:'(1 -  o)GgK;'O - (B.3) 

where g is defined by 

f da; [a(ao - a:) - f da;"K l(ao, a'd ') 

"-q -a" a "  (u.4) x ~ o ( R , : " ) G ( R ' "  - Ro ) ]  g t . ,  ,0 = ~(a,~ - a ; )  

Representing G as its Fourier transform and explicitly using the operator 
from Eq. (2.9) we obtain 

! t t  - -  I I t  t t l fdaodaoKo ( a o , a o ) e o ( R o ) a ( R o  - Ro) 

, k , , f  f d ' k  -,  ,, , - Doko ds ds ~ K[, (s s 

X r'~. kk -2  exp [ ik-  (r2 - r~)] 

(4=)2kD Ko- l + 1 

- ~ ~ s163 
(2'n')3Doko x'# m = - 1 

X [ f  d~'o~ r~ Yl*m(~'a)] [ f d~kk Ylm (~k)Y.~'#'(s ] 
= - kD/ko (B.S) 

The second equality in Eq. (B.5) is obtained by expanding K~- 1 in spherical 
harmonics and performing the s integration. The superscript on a in the 
argument of j l  in Eq. (B.5) indicates that the limit of a is approached from 
outside the sink in the use of ~. If we keep only the monopole term in the 
expansion of a, we get from Eqs. (B.5) and (B.4) 

g(ao, a')= 1 + ~0 e(ao,a2)_--ga(s163 (B.6) 
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Utilizing Eq. (B.3) in Eq. (3.1), the average density field becomes 

(n(r))  = n0(r ) - ~ / "  dr' dr" G ( r -  r ' ) ( 7 ~ ( r ' - r ' ) )  no(r" ) 

+ ~ 2 ~ dr' dr" dr'" dr 'v G(r - r')( T,(r' - r") 
fl~a.; 

x 6 ( r  - r ' " ) ~ ( r  . . . .  r '~ ~) 

-X X 2 f .  (B T) 
fi*a't*fl 

where 7~ (r) = gT~(r) and 

L ( r  - r ' )6~( r '  - r " )  = L ( r  - r ' ) [ 1  - ~ ( r ' ) ] G ( r '  - r " )  (B .8 )  

Combination of Eqs. (B.7) and (3.8) gives an expression for ~ which is then 
used to obtain kf and D(c) for the general radiation boundary condition. 
The leading term for kf is, from Eqs. (B.6)-(B.8) and (3.8) 

X(k=0) - - -g  da~dfl~K~ (a~ ,as )=  k 0 + k n  

It is natural to consider the radiation boundary condition with the further 
stipulation that the density at r = a is angle independent. Then o(f~) is also 
angle independent to leading order in concentration, and Eqs. (B.5), (B.6), 
and (B.9) are exact. Within this context it is straightforward to calculate the 
concentration dependencies of kf(c) and D(c). For the rate constant, the 
result presented in Eq. (4.13) is modified merely by a scaling of k D to gk n. 
The factors of ~ in Eq. (B.7) lead to less divergent terms in a given order of 
scattering. 

APPENDIX C 

We show here that the term S(r - r') ---- (T,~GTBv~GT,~GTB~,~) is less 
divergent than the ring term (T~ GTI~, ~ GTy~GT,~). The Fourier transform 
of S satisfies 

IS(k)) < S(k = O) (C.1) 

so that we need only consider this limit. Explicitly, 

d k',l k- S ( k =  

• e x p [  ik' �9 (r'o - < '  - r~ + r~) l 

• exp [ ik"-  ( - r:: + r::' + r~ - r~) ] 

x 1 1 (c.z) 
k'2k "2 l k "  - k ' l  2 



Concentration Dependence of Diffusion-Controlled Processes 469 

In Eq. (C.2) we suppress numerical factors and use ~ to indicate propor- 
tionately. The symbol 7rdf~ denotes integration over all the appropriate 
orientations. The divergence comes from k', k " ~  0, so we set the exponen- 
tial factors to unity, and integrate over the K-1  angular dependencies to 
obtain 

S(k=O)_f  a3k' f a3 " 1 1 1 ( ( dk" 1 k,2 Ik"- *'l 2 

(C.3) 

If we replace 1 / k  2 by l / ( k  2 + c 2) in Eq. (C.3), which corresponds to the 
r-space propagator e-'r/47rr, then the nature of the large r divergence is 
manifested as e ~ 0. Using this propagator in Eq. (C.3) and transforming to 
r space yields 

fo e -er S(k = 0, e ) ~  ~ dr (C.4) 
r 

With regard to large r, this diverges as lne. By contrast, the ring term of the 
same number of scatterings given in Eq. (4.11) goes as 

Z4(k = o ) ~ f o ~  dk k2G3(k) (C.5) 

and using G(k) = 1/_(k 2 + c 2) shows that Y4 diverges as ~4(k = O, ~)~.~ 1/e 3. 
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